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Inverse Approach to Turbomachinery Blade Design
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This paper presents a novel viscous inverse method for blade design. In this method, viscosity is directly taken into
account using a flow analysis code based on the Navier-Stokes equations. In this approach, the blade pressure
loading and the blade thickness are prescribed and the corresponding blade profile is sought. By specifying the target
pressure loading and the blade thickness, the camber line instead of the blade surface deforms. The prescription of
the blade thickness ensures that a realistic blade shape with closed leading and trailing edges can be obtained. The
redesign of an axial rotor and a stator blade, starting from an initial arbitrary profile in subsonic flow regimes,
demonstrates the merits and robustness of this approach.

Nomenclature

a,, b, = Fourier coefficients

c = blade chord

f = blade camber

k = turbulent kinetic energy

k;j = spring stiffness coefficient of edge ij

L;; = length of edge ij

n; = total number of neighboring vertices

P = time-averaged component of pressure

p = pressure

)2 = fluctuating component of pressure

qi,q, = constants in complementary functions for the upper
contour of blade

g3, qs = constants in complementary functions for the lower
contour of blade

r; = position vector of vertex i

s = blade contour following coordinate

tg = blade thickness

U = time-averaged component of velocity

u = velocity

u = fluctuating component of velocity

X,y = Cartesian coordinates

o = blade surface

Bi = arbitrary parameters in blade modification
formulation (i = 1, 2, 3)

AP = pressure loading

8; = displacement of vertex i

dp = difference between the target and initial pressure
loading

e = dissipation of turbulence kinetic energy

n = viscosity

Ly = turbulent viscosity

P = density

Subscripts

new = new calculated value

old = value at the previous iteration

Superscripts

+ = upper contour of blade

— = lower contour of blade
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1. Introduction

LARGE number of robust and sophisticated flow analysis
codes are now available for the simulation of flow through
turbomachinery blades [1-3]. These codes can be used directly for
blade design based on “trial and error” approaches. In these methods,
the designer relies on his previous experience to modify the blade
shape at a certain location to improve the flowfield there. However,
these methods are very inefficient and time consuming. To reduce the
development and design time and their associated costs, a more
systematic method is required. These direct methods can be
automated by coupling an automatic optimization algorithm, a CAD-
based blade generator, and a computational fluid dynamics (CFD)
code [4]. These methods are, however, very expensive in terms of the
required CPU time, particularly when they are coupled with a flow
analysis algorithm based on the Navier—Stokes equations. The
inverse design method is an alternative method that defines the blade
shape for a prescribed local flow property, such as surface pressure.
The physical model is used to derive the geometrical changes
required for achieving the prescribed local flow conditions [3,6].
Inverse design methods are usually based on potential flow equations
[7,8] or Euler flow equations [9-11]. The methods ignore fluid
viscosity, and so many characteristics of the real flowfields are
neglected. However, in certain flowfields, accurate modelling of
viscous flow using the Navier—Stokes equations is essential to design
the blade or airfoil shape more precisely [5]. Unfortunately, these
inviscid inverse design methods cannot be extended directly to a
method based on the Navier—Stokes equations. This is because the
blade modification algorithms of these inverse design methods
require a nonzero relative velocity on the surface, whereas the
relative wall velocity is zero in viscous flow calculations due to the
nonslip condition.

An inverse design method based on the elastic membrane concept,
which does not require the surface velocity for blade modification,
was first proposed by Garabedian and McFadden [12]. The method
can thus be used with the Navier—Stokes equations. This method was
modified using a Fourier series formulation by Dulikravich and
Baker [13]. In this approach, the surface of an aerodynamic body
deforms under the aerodynamic load similar to an elastic membrane.
The aerodynamic load is considered to be the local difference
between the target and initial surface pressure coefficients. The
elastic membrane under the aerodynamic load deforms smoothly
until the calculated surface pressure coefficient matches the target
surface pressure coefficient. Two linear partial differential equations
are used as aresidual corrector to modify the top and bottom contours
of the airfoil. However, this method is based on the prescription of the
surface pressure on the upper and lower contours of airfoils. The
surface pressure distribution allows for good control over the
flowfield but, in practical applications, defining a target pressure
distribution on the blade that leads to a physically realistic blade, or
any blade at all, cannot be guaranteed. In general, a blade that is
designed using an inverse approach that is based on the specification
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of surface pressure on it can have physically nonrealistic geometries,
such as an open leading edge or crossover trailing edge, as shown by
[5]. Furthermore, the extension of these methods to the inverse
design of three-dimensional blades is a challenge because the
prescription of blade surface pressure in three-dimensional flows is
extremely difficult. This is because the pressure distribution at the
hub and shroud of the blade cannot be specified independently [11].
To produce realistic blades by using inverse design methods, another
choice of target design specification instead of surface pressure
distribution is required.

A new two-dimensional design approach based on this concept is
developed for the inverse design of a blade based on the specification
of pressure loading distribution and blade thickness. The pressure
loading distribution is defined as the difference between the surface
pressures on the two sides of the blade. By specifying target pressure
loading, unlike in the previous method, the camber line instead of the
blade surface deforms under the aerodynamics load. It smoothly
deforms during design iterations until the calculated surface pressure
loading matches the target surface pressure loading. An immediate
consequence of using this method is that the prior determination of
the blade thickness ensures that a realistic blade shape with closed
leading and trailing edges can be obtained.

II. Inverse Design Method

The current inverse method consists of three integrated parts to
determine the required geometrical modification to accomplish the
target design specification. The first is the flow analysis algorithm,
the second is the blade modifying algorithm, and the third is the mesh
movement algorithm. The procedure involves coupling these three
algorithms to compute the blade shape. The method assumes that the
initial configuration of the turbomachinery, such as velocity input
and rotational speed, have already been decided. The basic steps in
the two-dimensional design procedure are given in Fig. 1.

First, the pressure loading of an initial blade is calculated using the
flow analysis algorithm. Then, the difference between the target and
the initial pressure loading distribution is used for blade
modification. The modified blade is then considered as an initial
blade, and this procedure is carried out iteratively until the
differences between the target and initial pressure loadings are
negligible. These steps and the application of the method to blade
design are described below.

Specifying initial blade,
blade thickness, and
target pressure loading

Flow analysis \
Calculate 5p i

3p is
negligible?

Mesh movement

Blade
modification

The designed
blade

Fig. 1 Inverse design flowchart.

III. Flow Analysis Algorithm

For steady, incompressible viscous flow in a Cartesian coordinate
system, the conservation laws of mass and momentum are described
by the following equations:

0
B—xi(ui) =0 (D

0 du;  Ou;\1 _ dp
ox, |:P’4i”_/ - M(ij + B_x,)] = o (@)

The primitive variables are split into their fluctuating and time-
averaged components, that is,

u=U+u 3)

p=P+p (C)]

U and P are the time-averaged components, and #’ and p’ are the
fluctuating components of velocity and pressure, respectively.
Substituting Eqs. (3) and (4) into Eqgs. (1) and (2), taking the time
average of each equation, and applying the Boussinesq hypothesis
for closure of the equations yields the following equations:

d

3 Ui =0 )
d U, AUN\]_ op
o, [PUfo ~ et W(ax,. +a_)] “Ta, ©

The standard k— model is implemented for turbulence modelling.
This model is one of the most common turbulence models used in
turbomachinery CFD codes because of its numerical stability. It is
also a good compromise in terms of accuracy and robustness. In this
model, u, is the turbulent viscosity and is given by:

e = pC,(K*/€) O

An approximate transport equation for k and ¢ can be written in the
following form:

0pU;k 0 (u, 0k

ox;  Ox; (O’k ox; + G pe ®

dpUie 3 (i, de & &2
= — C -G, —Cyp— 9
3x,» 3x,» (O:9 3x,» + ! k k 2P k ( )

Here G, represents the generation of k and is defined as

au;, U\ aU;

G, = —+ = 10
k Mr(axj + 8)61') axj ( )

Based on experimental data from a variety of turbulent flows [14], the
following values are recommended for the empirical constants that
appear in Eqgs. (8) and (9):

C, =144,

C,=192, C,=.09,

u o,=1, and 0.=1.3

The flow analysis algorithm is based on the work of Charlesworth
[15], who developed a Navier-Stokes flow analysis code in a
stationary frame. In this algorithm, the pressure correction method
developed by Patankar [16] has been used to solve the
incompressible Navier—Stokes equations on unstructured meshes.
A cell-centered finite volume discretization of the governing
equation based on the work of Mathur and Murthy [17] was
developed. The second-order discretization of the convective and
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diffusive terms in the governing equations is used. The pressure
correction equation is solved using an adapted form of algebraic
multigrid for unstructured meshes. Global normalized residuals are
defined for the governing equations to allow a global convergence
criterion to be specified. Such criteria are set to 107> for all
discretized equations. The times taken for flow solution for various
geometries on a Compaq (NUM) computer show that the code has a
reasonable numerical computational cost in comparison with other
codes [15]. The flow analysis algorithm is verified, updated, and
extended by Rahmati [5] for flow analysis and the inverse design of
turbomachinery blades. The efficiency and accuracy of the current
incompressible flow analysis algorithm has been validated for
various complex geometries, such as axial turbomachinery [5] and a
marine propeller [18]. The results of the numerical calculations are in
good agreement with the published data. This data are both
experimental and numerical and so allow a comparison not only with
the real flow patterns but also with other codes that have been
developed for the solution of the Navier—Stokes equations.

IV. Mesh Movement Algorithm

A mesh movement algorithm is an integral part of the current
inverse design method because, once the blade surface is modified by
the inverse algorithm, the corresponding triangular mesh also needs
to be changed. The mesh movement algorithm is based on the
method of Batina [19], who proposed a mesh movement method
based on the linear tension spring analogy. In this method, each of the
unstructured mesh edges are modeled as springs with the stiffness
inversely proportional to the length of the edges. By displacement of
the boundaries of the domain, the spring forces are calculated for
every vertex by mesh-point movement. At static equilibrium of the
system, the force at every vertex must be zero, that is,

n;

Jj=1

where k;; is the spring stiffness coefficient at edge i j, which is defined
as
1 1
kijj=—= (12)
Lij \/(x_/- - x[)2 + ()’_/ - )’i)z

d; and §, are the displacements of vertex i and its neighboring vertex
J,respectively, and n, is the total number of neighboring vertices (see
Fig. 2).

X
Fig. 2 Spring analogy mesh movement method for triangular meshes.

By solving the static equilibrium equations of the spring forces
iteratively at each interior vertex, the final displacement of vertex i
after n iterations is as follows:

grot = 2im ki (13)
' Z;i:l kij

8"+1 is the final displacement of vertex i, and so the new position of
vertex i) is determined as follows:
— pold 1

riev = pold 4§t (14)
where 1 and r*" are the old and new positions of vertex i,
respectively. A linear tension spring analogy is applied here because
only the nodal displacements are important and not purely elastic
variables, such as local stress or strain. Also, this method is a robust
method and has a low computational cost. The efficiency and

robustness of the method for the inverse design of various blades and
airfoils has been validated [6,18].

V. Blade Modifying Algorithm

For blade modification, the pressure loading, AP, and blade
thickness are prescribed along an initial blade. The blade surface is
treated as an elastic membrane that is modified according to the
differences between the target and calculated pressure loading. The
following linear partial differential equations are used as a residual
corrector to modify the top and bottom contours of the blade,
respectively:

- ﬂla(Aytop) + ﬁ2a(Ayt0p)/8s + ﬂ382(Ayt0p)/8s2 = 8p+ (15)

ﬁla(Aybonom) + ﬂZa(Aybollom)/as - /33az(Aybottom)/as2 = 8177
16)

Following Dulikravich and Baker [13], the following values are used
for the arbitrary constants S,, B,, and B; in there equations:
B =Ap,, B=0, and B3 =04 Ap,. Ap, is the difference
between the maximum and minimum magnitudes of the target
pressure loading values. These arbitrary constants control the
convergence of the inverse design. In Egs. (15) and (16), L is the
lower blade contour length, s is the blade contour following
coordinate, L is the total blade counter length, and Ay,, and Aypoom
are the normal displacements at the top and bottom counters of the
blade, respectively (see Fig. 3).

The superscripts + and — are used to denote the upper and lower
surfaces, respectively; dp* and §p~ are the aerodynamic loads,
which are the difference between the calculated and target surface

0
s

Fig. 3 Blade modification method using the elastic membrane concept.
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pressures, that is,

spt=p —p (17)

Sp~ =p; —p: (18)

where p, and p. are the target and calculated surface pressures,
respectively. The value of the target surface pressures on the top and
bottom contours of the blade, p;" and p;, are unknown before blade
design, but the target pressure loading, A p,, is prescribed. Based on
the value of Ap,, the following surface pressure distribution is used
as the target pressure:

pi = (Ap./Ap) x pt (19)
pr =(Ap/Apc) x pe (20)

where Ap.,. is the calculated pressure loading, defined as
Ape=pd—p: @D

By using Eqgs. (15) and (16) as the target pressure, the target pressure
loading always remains equal to the prescribed target pressure
loading, A p,. The substitution of Eq. (19) into Eq. (17), and Eq. (20)
into Eq. (18), yields the following equations for the aerodynamics
loading on the blade:

sp* = (Ap,/Ap) x pl —pl (22)

8p~ = (Ap:/Ape) X pe = pe (23)
These equations are rearranged as follows:

sp*t =[(Ap,/Ap) — 1] x p& 24)

§p~ =[(Ap:/Ape) =11 x pc (25)

Equations (15) and (16) are nonhomogeneous second-order
equations with constant coefficients. The complementary functions
of these equations for the top and bottom contours are

Ay =g, + gre* (26)

Aybottom — 6I3€7)“S + q4e—kzs (27)

where

_ 2
= TPaE VBB o)

285

q1- 9>, 43, and g, are constants that are computed from the boundary
conditions at the leading and trailing edges. To calculate the
particular integral of Egs. (15) and (16), the surface distribution of 6 p
is represented by using the Fourier series expansion as follows:

8p(s) = ay + ) a, cos(N,s) + b, sin(N,5) ~ (29)

n=1

where N, =2nn/L, and «,, «,, and b, are the Fourier series
coefficients. The particular integrals of Eqs. (15) and (16) are
represented in the form of Fourier series as

Mmax

AyP = AgP + ) AP cos(N,s) + By sin(N,s)  (30)
n=1

Aybottom — Agottom + ZAgmtom cos(N,s) + Bgottom sin(N,s) (31)

n=1

The values of Ay, A,,, and B,, are found by the substitution of Eq. (30)
into Eq. (15), and Eq. (31) into Eq. (16). These values are calculated
as follows:

top __ an(ﬂl + N%ﬁ}) — bn(ﬁZNn)
A= T N+ BN,y S E ee OY
bn(ﬂl + NﬁlgS) + an(ﬂZNn) 1<n< Moo (33)

B =
(B1 + N;B3) + (BoN,)? T

2
potom — _ A BrF NaB) + by (BN

(Bi + N;B3) + (BoN,)?

2 —
groon — _DnBL £ NuBy) —an(BoN) -y s

(B1 + N;B3) + (BoN,)?

Having found the particular integral and complementary functions of
Eqgs. (15) and (16), the complete solution of these equations is given
by the following equations:

Mmax

Ay = g,eM + g, + ZA;OP cos(N,,s) + ByP sin(N,,s)
n=0

(36)
Aybollom — q}e—)»]s + q4e*)\.23‘
Tmax
+ ) Apeom cos(N,s) + B sin(N,5) (37)
n=0

Equations (36) and (37) contain four unknown constants: ¢, ¢,, g3,
and ¢q,. To compute these constants, the following boundary
conditions are applied: zero trailing-edge displacement, trailing-
edge closure, leading-edge closure, and smooth leading edge. For the
airfoil shown in Fig. 3, this yields four equations with four
unknowns, ¢1, ¢,, g3, and g4, which are found from the following
matrix:

q: 7 1 1 0 0 -1
9> 0 0 el ekt
45 = oML e—ale _eMLe oML
q4 _kle_k'LE —hyeRele ) eMle —)\ze)‘zLE
i - Sz A
5 - A a8)
nmx AA, cos(N,Lg) + AB, sin(N, L)
LY im —AA,N, sin(N,Lg) + AB,N, cos(N,Lg)]

where

AA, = AP — Abetom (39)

ABn — B;"P _ Bl’;onnm (40)
The new surface contours, ., based on these modifications will be

a:rew = a;id + Aytop (41)

Upew = Olgld + Aybottom (42)

where oy is the surface contour of the previous blade and is a
function dependent on the x coordinate. However, in this method, the
blade thickness is constant and the camber line is modified during
design iterations. Thus, a relationship between the new and old
camber lines is found by adding Eqs. (37) and (38):

a:;,w + a;ew = a:id + a;ld + Aylup + Aybottom (43)
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New camber line
Old camber line
[ J Fixed stacking point

Fig. 4 New inverse design method; the stacking condition and the blade
thickness are imposed.

By considering f,q and f,., as the old and new camber lines,
respectively, and #, as the blade thickness, we have

g = foua — (19/2) (44
dgq = foua + (16/2) (45)
Opew = fnew - (t9/2) (46)
ar_l*—ew = fnew + (29/2) (47)

The blade thickness, fy, is considered to be constant during design
iterations (see Fig. 4). Substituting these four equations into Eq. (43)
yields the following relation between the old and new camber lines:

Aytop + Aybottom

fnew=f01d+ 2

(48)
Thus, by specifying the target pressure loading, the camber line
instead of the blade surface deforms under the aerodynamics load. It
deforms smoothly during design iterations until the calculated

20
2
v

<]
<
<]

vy,
RN

Fig. 5 The mesh with 15,776 cells around the initial stator blade.

a) b)

Fig. 6 Mesh: a) close to the pressure side of the stator blade, and b) close
to the suction side of the blade.

a)

Fig. 7 Mesh with 13,436 triangle cells around the initial rotor blade:
a) in the complete computational domain, and b) close to the blade.

0.25m -
0.20m o
0.15m o
> 0.10m A
0.05m A
—— Designed blade
o Initial blade
0.00m 1 UTRC blade
-0.05m T T T T
0.00m 0.05m 0.10m 0.15m
X

Fig. 8 Reproducing the UTRC stator blade based on prescribed
pressure loading.

3000

2000 A

1000

0 4

-1000 A

Surface pressure (Pa)

-2000 A

¢ UTRC blade
-3000 A = Initial blade
Designed blade

-4000 T T T T T T T T T
-0.02 000 002 004 006 008 010 0.12 014 0.16 0.18

Axial chord from the leading edge (m)
Fig. 9 Initial, designed, and target pressure loading of the stator blade.
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0.15m

0.10m

0.05m
>

0.00m

UTRC Blade
Initial Blade
-0.05m —— Designed Blade
L L L
-0.1m 0.0m 0.1m 0.2m
X
Fig. 10 Initial, designed, and UTRC rotor blade.
0

-500 -

-1000 A
©
S
© -1500 4
>3
7]
%]
o
S -2000 -
®
s
5 -2500 -
7]

3000 4| *© UTRCblade

Initial blade
— Designed blade
-3500 T T T T T T T T T

000 0.02 004 006 008 010 012 014 016 0.18
Axial chord from the leading edge (m)

Fig. 11 Pressure loading of the initial, designed, and UTRC rotor
blade.

surface pressure loading matches the target surface pressure loading.
The new blade geometry is calculated by adding the constant blade
thickness to the new camber line during design iterations. The
process is repeated until the calculated blade pressure loading
matches the target pressure loading.

Inverse blade design methods are now used in the industry to
improve the performance of a known blade or to create a new design
based on an earlier design that operates under the same conditions
[10,11]. However, to assess the robustness and efficiency of inverse
design methods, they are usually applied to the redesign of blades for
which the experimental data are available.

2000

. UTRC blade
Initial blade

1000 4 —— Designed blade

-1000 -

Surface pressure (Pa)

-2000 4

-3000 T T T T T T T T T
0.00 0.02 004 006 008 010 0.12 0.14 0.16 0.18

Axial chord from the leading edge
Fig. 13 Surface pressure of the initial, designed, and UTRC rotor
blade.

VI. Inverse Design Applications

To assess the capability and robustness of the current method and
its convergence to a unique solution, it is applied to the redesign of
the midspan of a United Technologies Research Center (UTRC)
rotor and stator blade. The data published in [20] on the experimental
measurements of the rotor and stator at the UTRC are used as the
target design in this study. The high-speed ratio of this blade isolates
the end-wall effects and gives rise to a smooth and nearly two-
dimensional flow near the midspan. Also, the average Mach numbers
of flows at the outlet of the stator and rotors are approximately 0.2,
and so the flow can be considered as an incompressible two-
dimensional flow at the midspan of the blade. The axial chords of the
stator and rotor blades are 15.06 and 0.161 m, respectively. The blade
span for both blades is 0.1524 m. Figures 57 show the triangular
mesh around the initial stator and rotor in the complete numerical
domain and the close-up around the blade surface, respectively. To
simulate the nominal operating rotational speed of the rotor, a
constant tangential velocity of 29.5 m/s is specified in the flow
computation. The axial flow velocity is 22.86 m/s, the same as the
axial velocity in the experiment. The goal is to redesign the UTRC
blade using the target pressure loading and an initial blade. To
redesign the blade, an arbitrary blade that has the same blade
thickness as the original UTRC blade but with a different camber line
is taken to be the initial blade. Then the pressure loading of this initial
blade is calculated. The discrepancies between the target and
calculated pressure loadings determine the geometrical blade
modification. Figures 8-11 show the geometries and pressure
loadings of the initial, target, and redesigned blades. As shown in
Figs. 12 and 13, the surface pressures of the designed blades and the
original blade also match very closely. The results show areasonable
agreement between the UTRC blade and the designed blade. The
global convergence criterion is set to 107> for all discretized
equations of the flow analysis algorithm. The blade shape converges
when the maximum discrepancy between the target and calculated

3000
2000 -

© i

o 1000

L

2

& 0 -

Qo

S

8

Rd -1000 -

=1

@ . UTRC blade
-2000 - - Initial blade

Designed blade

-3000 T T T T T T T T

-0.02 0.00 0.02 0.04 0.06

0.08 0.10 0.12 0.14 0.16 0.18

Axial chord from the leading edge (m)
Fig. 12 Surface pressure of the initial, designed, and UTRC stator blade.
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pressure loading is reduced to 1%. The design solution converges
after only 65 and 80 calls to the analysis algorithm for the stator and
rotor blades, respectively. Thus, the total numerical computational
cost of the design is about 65-80 times the required convergence time
of the flow analysis algorithm.

VII. Conclusions

A Navier—Stokes inverse design method based on the specification
of pressure loading on the blade and the blade thickness is developed.
In this method, the required blade modification is computed based on
the discrepancies between the initial and target pressure loading
distribution. Inviscid inverse design approaches are incapable of
predicting viscous effects on the flow through the turbomachinery
blades, which is the main cause for losses through skin friction on the
walls and through separation. One of the improvements of the
proposed method over previous inviscid methods is that the
flowfields are treated as viscous turbulent flows using a Reynolds-
averaged Navier—Stokes model. Also, as the proposed inverse design
method is based on the specification of pressure loading distribution
on the blade and the blade thickness, the method does not have the
difficulties associated with a design based on the specification of
surface pressure. Indeed, by specifying the pressure loading instead
of the surface pressure, it is possible to control the pressure loading
while maintaining structurally sound blades. The capabilities of this
design methodology have been verified by reproducing the
midsection of a UTRC rotor and stator blade operating in a subsonic
flow region. By specifying a target pressure loading with blade
thickness, the final blades were successfully reproduced. The
numerical results show the efficiency of the method for blade inverse
design.
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